CHAPTER 28

FUEL SYSTEM

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-00</td>
<td>Description</td>
<td>28.1</td>
</tr>
<tr>
<td>28-10</td>
<td>Bladder Assembly</td>
<td>28.3</td>
</tr>
<tr>
<td>28-11</td>
<td>Rollover Valves</td>
<td>28.5</td>
</tr>
<tr>
<td>28-12</td>
<td>Sump Valve</td>
<td>28.6</td>
</tr>
<tr>
<td>28-20</td>
<td>Fuel Quantity</td>
<td>28.7</td>
</tr>
<tr>
<td>28-21</td>
<td>Fuel Quantity Sender</td>
<td>28.7</td>
</tr>
<tr>
<td>28-22</td>
<td>Low-Fuel Switch Assembly</td>
<td>28.10</td>
</tr>
<tr>
<td>28-23</td>
<td>Fuel Flow Meter Installation</td>
<td>28.11A</td>
</tr>
<tr>
<td>28-30</td>
<td>Fuel Valve</td>
<td>28.13</td>
</tr>
<tr>
<td>28-31</td>
<td>Fuel Valve Control Rigging</td>
<td>28.13</td>
</tr>
<tr>
<td>28-40</td>
<td>Fuel Flow Check</td>
<td>28.14</td>
</tr>
<tr>
<td>28-50</td>
<td>Aux Fuel System</td>
<td>28.17</td>
</tr>
<tr>
<td>28-51</td>
<td>Tank Assembly</td>
<td>28.18</td>
</tr>
<tr>
<td>28-52</td>
<td>Support Assembly</td>
<td>28.20</td>
</tr>
<tr>
<td>28-53</td>
<td>Bladder</td>
<td>28.21</td>
</tr>
<tr>
<td>28-54</td>
<td>Fuel Quantity Sender</td>
<td>28.25</td>
</tr>
<tr>
<td>28-55</td>
<td>Pump Assembly</td>
<td>28.25</td>
</tr>
</tbody>
</table>
28-00 Description

A single bladder-type crash-resistant fuel cell supplies fuel via gravity flow to the engine. The fuel cell incorporates left and right vent fittings, a filler port, a fuel gage sender, a low-fuel switch assembly, a sump drain, and a finger strainer at the fuel outlet. The low-fuel switch assembly activates the LOW FUEL segment on the annunciator panel, indicating approximately five gallons of usable fuel remaining. The vent fittings each have a rollover valve to prevent fuel leakage in any attitude.

The fuel cell is secured inside an aluminum structure. The filler cap is located under a cowl door. The left and right side vent fittings are interconnected and vent through two risers within the mast fairing. A fuel valve is located on the forward side of the firewall and is controlled by a push-pull cable control at the base of the pilot’s collective stick.

The engine incorporates a fuel pump assembly with an inlet filter. A differential pressure switch illuminates the FUEL FILTER warning light if the filter becomes contaminated.

A single drain allows fuel sampling from the low point in the fuel cell. The drain tube is accessible via a left side cowl door. The drain is opened by extending the plastic tube clear of the aircraft and pushing up on the drain.

Refer to § 28-50 for optional aux fuel tank installation system description.
FIGURE 28-1 MAIN FUEL SYSTEM
28-10 Bladder Assembly

CAUTION
G028-1 bladder assembly temperature should be above 65°F before removing, installing, or flexing bladder.

A. Removal

1. Defuel helicopter per § 12-42.
2. Remove tailcone cowling assembly per § 53-23.
3. Remove fuel quantity sender per § 28-21.
4. Refer to Figure 28-1. Remove D277-8 clamps or cut and discard safety wire securing A729 tube to left rollover valve and pull tube off of valve. Remove screws securing F250-1 cover assembly to G028-1 bladder assembly and F028-1 support assembly and remove cover. Remove and discard o-ring.
5. Remove D277-8 clamp or cut and discard safety wire securing A729 tube to right rollover valve and pull tube off of valve. Remove screws and washers securing valve to bladder and support. Cut and discard ty-rap securing 35486 hanger tab to G915-5 tab.
7. Disconnect D205-21 (fuel outlet) hose assembly from B254-3 strainer and cap fittings. Remove screws and washers securing strainer to bladder and support. Remove strainer and tape bladder opening.
8. Remove sump valve per § 28-12.
9. Remove hardware securing G004-4 (right side, aft fuselage) skin to cabin and remove skin. Detach bladder hook tape from support loop tape, and remove bladder through right side opening.
B. Installation

1. Refer to Figure 28-1. Dust exterior of G028-1 bladder assembly and F028-1 support assembly floor with talcum powder to facilitate bladder slippage along metal surface. Do not allow powder to enter bladder.

2. Note locations of hook and loop tape on bladder lower surface and support floor. Orient bladder, fold into thirds, place in center of support, and unfold into position.

3. Apply light coat A257-9 anti-seize to screw threads and install screws and washers securing right rollover valve to bladder and support; verify security. Secure A729 tube to valve using D277-8 clamp; verify security.

4. Install (new) MS3367-7-9 ty-rap securing 35486 hanger tab to G915-5 tab. Cinch ty-rap until snug without over-tightening, and trim tip flush with head.

NOTE
Verify bladder is free of wrinkles across lower surface and properly located before attaching hook and loop tape. Bladder may be pressurized with air to 1 psi max to assist installation.

CAUTION
Avoid contaminating bladder assembly interior. Cover arms with sleeves and use lint-free gloves when working inside bladder.

5. Remove tape from bladder assembly openings. Insert a clean, smooth, blunt wooden dowel through bladder’s fuel port opening and press on bladder lower surface to attach hook and loop tape. Verify security.

7. Apply light coat A257-9 anti-seize to screw threads and install screws and washers securing bladder outlet to support. Lubricate new MS29512-06 packing using A257-6 grease and install on B254-3 strainer. Install strainer in bladder and special torque strainer per § 20-33.

8. Remove caps and connect D205-21 hose assembly to strainer. Using backup wrench, special torque hose nut per § 20-33, and torque stripe per Figure 5-1.

9. Install sump valve per § 28-12.

10. Lubricate (new) MS29513-270 packing using A257-6 grease and install packing in recess at bladder’s fuel port opening. Apply light coat A257-9 anti-seize to screw threads and install screws securing F250-1 cover assembly to bladder and support; verify security. Secure A729 tube to left rollover valve using D277-8 clamps; verify security.

11. Install fuel quantity sender per § 28-21.
28-10 Bladder Assembly (continued)

B. Installation (continued)

12. Service helicopter with minimum two gallons fuel per § 12-41. Verify no leaks, especially at bladder outlets. Install G004-4 (right side, aft fuselage) skin and install hardware securing skin to cabin; verify security.

13. Perform fuel flow check per § 28-40.

28-11 Rollover Valves

WARNING

Orientation of rollover valve balls is critical to valve operation. The gold ball on top (earlier ball on top was blue) floats and seals the vent in the event of inadvertent over-filling or in-flight sloshing. The red ball on bottom presses the top ball against the vent seat if the aircraft is inverted.

A. Packing Replacement and Valve Inspection

1. Remove tailcone cowling assembly per § 53-23, as required.

2. Refer to Figure 28-1. Remove D277-8 clamp(s) or cut and discard safety wire securing A729 tube to rollover valve and pull tube off of valve.

3. Remove G254-2 fitting or G254-6 retainer. Remove and discard MS29512-10 packing (G254-2 fitting only) and A215-015 o-ring.

4. Carefully remove B208-5 and B208-6 balls using a suction cup attached to a syringe. Inspect condition of balls, valve body, and fitting or retainer. Clean parts and verify no nicks, scratches, gouges, dents, cracks, or corrosion.

5. Carefully install B208-6 ball (red, solid) on bottom and B208-5 ball (gold or blue, hollow) on top in valve body using a suction cup attached to a syringe.

7. Install fitting or retainer and special torque per § 20-33.

8. Secure A729 tube to valve using D277-8 clamp; verify security.

9. Install tailcone cowling assembly per § 53-23, as required.
28-12 Sump Valve

A. Removal

1. Defuel helicopter per § 12-42.

2. Refer to Figure 28-1. Cut and discard safety wire (if installed) securing A729 tube to A761-2 or 1250H (sump) valve and remove tube.

3. Remove valve from G154-1 outlet assembly; tape bladder opening.

4. Actuate and lock valve to expose stem; remove and discard o-ring.

B. Installation

1. Actuate and lock A761-2 or 1250H (sump) valve to expose stem; install (new) o-ring in stem seat.

2. Refer to Figure 28-1. Lightly coat valve threads using B270-6 sealant. Remove tape and install valve in bladder outlet. Special torque A761-2 valve per § 20-33, or standard torque 1250H valve per § 20-32, and torque stripe per Figure 5-1.

3. Secure A729 to valve stem. Note: safety wire is not required.

4. Service helicopter with minimum two gallons fuel per § 12-41. Verify no leaks.
28-20 Fuel Quantity

28-21 Fuel Quantity Sender

CAUTION
Avoid contaminating bladder interior. Cover arms with sleeves and use lint-free gloves when working inside bladder.

A. Removal

1. Turn battery switch off and pull out (2 amp) GAGES circuit breaker at panel.

2. a. **Main tank:** Refer to Figure 28-1. Remove screws securing G271-1 guard to F250 cover assembly and remove guard.

 b. **Aux tank:** Pull out (5 amp) AUX FUEL PUMP circuit breaker at panel. Remove screws securing G271-1 guard to G759 cover assembly and remove guard.

 CAUTION
Rotation of fuel sender center stud or base nut is not permitted.

3. a. **Main tank:** Using a backup wrench, remove hardware securing F049-04 harness assembly to F550-1 fuel quantity sender.

 b. **Aux tank:** Disconnect G768 harness assembly from airframe harness and G759 cover assembly at connectors.

4. Remove bolts securing fuel sender to cover assembly. Carefully pull fuel sender lever through opening. Tape bladder opening.

B. Installation

1. Perform fuel sender check per Part C.

2. Turn battery switch off and pull out (2 amp) GAGES circuit breaker at panel.

3. a. **Main tank:** Refer to Figure 28-1. Remove tape and carefully lower F550-1 fuel quantity sender lever through F250-1 cover assembly opening.

 b. **Aux tank:** Pull out (5 amp) AUX FUEL PUMP circuit breaker at panel. Remove tape and carefully lower F550-2 (large tank) or F550-3 (small tank) fuel quantity sender lever through G759 cover assembly opening.

4. Install bolts securing fuel sender to cover assembly. Special torque bolts in criss-cross pattern per § 20-33 and torque stripe per Figure 5-1.
FIGURE 28-2 FUEL SENDER CHECK

F550-1 Fuel Quantity Sender (Main Tank)

F550-2 Fuel Quantity Sender (Large Aux Tank)

F550-3 Fuel Quantity Sender (Small Aux Tank)
28-21 Fuel Quantity Sender (continued)

B. Installation (continued)

CAUTION

Rotation of fuel sender center stud or base nut is not permitted.

5. a. **Main tank:** Using a backup wrench, install hardware securing F049-04 harness assembly to fuel sender. Special torque nuts per § 20-33, standard torque palnuts per § 20-32, and torque stripe per Figure 5-1.

 b. **Aux tank:** Connect G768 harness assembly to G759 cover assembly and airframe harness at connectors. Verify security.

7. Perform fuel indication check per Part D.

C. Fuel Sender Check

1. Remove fuel sender per Part A.

2. Simulate mounting position of appropriate F550 fuel quantity sender per Figure 28-2. Position float arm as shown and measure the resistance with a multimeter. Verify resistance is within tolerance at each noted height.

3. If resistance is out of tolerance at any height, bend float arm up for a fuel sender with excessive resistance, or bend float arm down for a fuel sender with too little resistance. Repeat steps until fuel sender resistance is within tolerance.

4. Install fuel sender per Part B.
D. Fuel Indication Check

1. a. Main bladder fuel indication check: Defuel main bladder per § 12-42.

 b. Aux tank fuel indication check: Verify main bladder has no more than 65 gallons fuel; defuel main bladder per § 12-42, as required.

2. Pull fuel valve into off position.

3. a. Main bladder fuel indication check: Fuel main bladder with 19.4 gallons ± 0.5 gallon per § 12-41.

 b. Aux tank fuel indication check: Fuel aux tank with 10.1 gallons ± 0.5 gallon (large tank) or 5.9 gallons ± 0.5 gallon (small tank) per § 12-41.

4. Refer to Figure 28-3. Push in (2 amp) GAGES circuit breaker at panel and turn battery switch on. (Press QUANTITY button on aux fuel control panel for aux tank quantity, displayed on fuel quantity gage.) Verify gage reads one-half needle width to one & one-half needle widths below one-quarter mark. If fuel gage indication is correct, proceed to step 6.

5. If fuel gage indication is incorrect, remove fuel quantity sender per Part A. Slightly bend sender lever up for a gage that reads too high, or down for a gage that reads too low. Install fuel quantity sender per Part B.

6. Turn battery switch off and push fuel valve into on position.
28-22 Low-Fuel Switch Assembly

CAUTION
Avoid contaminating bladder interior. Cover arms with sleeves and use lint-free gloves when working inside bladder.

A. Schematic
Refer to Figure 98-1 or 98-2 for (single) low fuel warning installation wiring schematic.
Refer to Figure 98-33 for (dual) low fuel warning installation wiring schematic.

B. Removal
1. Defuel helicopter per § 12-42.
2. Open baggage compartment door. Remove G248 (battery compartment) cover.
3. Refer to Figure 28-1. Remove D277-6 clamp or cut and discard safety wire securing A729 tube to G930-1 drain assembly. Remove screws securing G930-4 retainer and drain assembly to G250-1 sump tray.
4. Remove fuel cap. Carefully capture A521-2 (single) or A521-4 (dual) switch assembly body with clean mechanical fingers (avoid capturing float).
5. Inside baggage compartment, remove nut, washer assembly, and spacer securing switch assembly to tray. Disconnect F049 harness assembly from switch assembly at connectors; extract switch assembly pins from housing.

C. Installation
1. Lubricate (new) MS29512-05 packing with A257-6 grease and install packing over switch assembly threads.
2. Refer to Figure 28-1. Remove fuel cap. Tape A521-2 (single) or A521-4 (dual) switch assembly wiring to 4-ft length of lockwire; insert other end of wire through fuel cap opening and through switch assembly opening. Carefully grip switch assembly body with mechanical fingers and lower switch assembly to bottom of bladder. Inside baggage compartment, remove tape, guide wiring through opening, and install spacer, washer assembly, and nut securing switch assembly to G250-1 sump tray. Special torque nut per § 20-33 and torque stripe per Figure 5-1. Remove tape and lockwire. Release and remove mechanical fingers, and install fuel cap.
3. Assemble switch assembly pins in housing per Figure 98-1; connect F049 harness assembly to switch assembly at connectors. Fit wiring through gap in G930-1 drain assembly seal; install G930-4 retainer and screws securing retainer and drain assembly to tray. Verify security. Seal gap in drain assembly seal where wires pass thru using B270-5 sealant.
C. Installation (continued)

4. Secure A729 tube to drain assembly using D277-6 clamp; verify security.
5. Perform operation check per Part D.

D. Operation Check

1. Service helicopter with 7 gallons fuel per § 12-41.
2. If not previously accomplished, remove G248 (battery compartment) cover.
 Verify no leaks around switch assembly. Open sump drain access door and verify
 no leaks from (low-fuel switch) drain tube.
3. Turn battery switch on.
4. Remove fuel cap. Insert a clean, non-sparking rod through (fuel cap) opening
 and gently depress A521 switch assembly’s float (lower float, if dual switch is
 installed); verify LOW FUEL annunciator segment illuminates.
5. Dual switch only: Remove rod. Service helicopter with additional 5 gallons fuel
 (12 gallons total) per § 12-41. Insert clean, non-sparking rod through opening
 and gently depress switch assembly’s upper float; verify <12 GAL FUEL light
 illuminates.
6. Remove rod and install fuel cap.
7. Turn battery switch off.
8. Secure access doors and install battery compartment cover; verify security.

E. Scheduled Maintenance

Every 12 Months: Perform operation check per Part D.
28-23 Fuel Flow Meter Installation

A. Description

The fuel flow meter installation consists of a fuel flow transducer installed in the engine fuel line, and a fuel flow signal adapter installed behind the left rear seatback on the cabin bulkhead. The output signal from the adapter provides fuel information including flow rate, calculated fuel remaining, and fuel range rings on either Garmin GTN-series or Avidyne IFD-series moving-map navigation displays.

The fuel flow meter transducer is installed between the engine fuel control unit (FCU) and an engine fuel check valve. A short, rigid fuel line is installed between the transducer and the FCU. A longer, rigid fuel line (delivered with the helicopter), may be installed to put the engine in its original configuration.

Fuel gages and low fuel warning light(s) are independent of the fuel flow meter installation and are the primary indicators of fuel quantity. Fuel flow meter data is for electronic display purposes only.

B. Schematic

Refer to Figure 98-33 for fuel flow meter installation electrical schematic.

C. Removal

Transducer

1. Remove engine cowling assembly per § 53-21.
2. Turn battery & avionics switches off and pull out GPS (5 amp) circuit breaker on panel. Pull fuel shut off valve off.
3. Disconnect airframe harness electrical connector from 660534HR-01 transducer assembly.
4. Refer to Rolls-Royce OMM Task 73-00-00-000-801 and observe precautions. Place a drip pan under the engine to catch fuel leakage.
5. Remove hardware securing G155-1 (aft) and G155-2 (forward) brackets to engine horizontal shield assembly. Remove hardware securing forward bracket to transducer and remove bracket.
6. Loosen nuts securing fuel tube and transducer sub-assembly to fuel control unit and check valve using back-up wrench. Remove transducer sub-assembly and engine nut, washers, and G155-1 aft bracket; discard AS4824N0 seals. Cap and plug all open fittings.
7. Further disassemble parts from transducer as required; discard AS4824N08 seals.
8. As required, install the fuel check valve per Rolls-Royce OMM Task 73-11-15-400-801. Install fuel control-to-check valve fuel tube per OMM Task 73-00-00-420-005; install new AS4824N04 seals.
28-23 Fuel Flow Meter Installation (continued)

C. Removal (continued)

Adapter

1. Remove aft left back rest assembly per § 25-22.
2. Turn battery & avionics switches off and pull out GPS (5 amp) circuit breaker on panel.
3. Disconnect airframe harness electrical connector from AIS-380 adapter.
4. Remove hardware securing adapter to cabin bulkhead and remove adapter.

D. Installation

Transducer

1. Configure AIS-380 adapter if a replacement adapter or 660534HR-01 transducer assembly was installed per Part E.
2. Turn battery & avionics switches off and pull out GPS (5 amp) circuit breaker on panel.
3. Refer to Rolls-Royce OMM Task 73-00-00-400-801 and observe precautions. Place a drip pan under the engine to catch fuel leakage.
4. As required, remove fuel control-to-check valve fuel tube per Rolls-Royce OMM Task 73-00-00-990-805; discard AS4824N04 seals. Refer to Rolls-Royce OMM Task 73-11-15-000-801; remove hardware securing fuel check valve to horizontal fireshield.
5. Remove caps and plugs from fittings. Assemble engine washers, G155-1 (aft) bracket, engine nut, new (2) AS4824N04 seals, SS6565-8-4 (reducer) fitting, new (2) AS4824N08 seals, 660534HR-01 transducer assembly, and 564601 tube assembly between fuel check valve and fuel control unit. Install hardware securing G155-2 (forward) bracket to transducer and tighten screws; install hardware securing G155 brackets to horizontal fireshield finger tight. Verify proper alignment with aft bracket; relocate engine-supplied washers as required.
6. Special torque engine-supplied nut to fuel check valve per § 20-33; special torque SS6565-8-4 fitting to fuel check valve per § 20-33; special torque SS6565-8-4 fitting to transducer per § 20-33; special torque 564601 tube assembly to transducer per § 20-33; special torque 564601 tube assembly to fuel control unit per § 20-33. Tighten hardware securing G155 brackets to horizontal fireshield. Verify security.
7. Connect airframe harness electrical connector to transducer assembly; verify security.
8. Push in GPS circuit breaker (5 amp) on panel. Turn battery & avionics switches on.
D. Installation (continued)

Transducer (continued)

9. Perform appropriate functional checks per Garmin GTN-series or Avidyne IFD-series moving-map navigation display Pilot’s Guide.

10. Install engine cowling assembly per § 53-21.

Adapter

1. Configure AIS-380 adapter if a replacement adapter or 660534HR-01 transducer assembly was installed per Part E.

2. Turn battery & avionics switches off and pull out GPS (5 amp) circuit breaker on panel.

3. Install hardware securing adapter to cabin bulkhead; verify security.

4. Connect airframe harness electrical connector to adapter; verify security.

5. Push in GPS circuit breaker (5 amp) on panel. Turn battery & avionics switches on.

6. Perform appropriate functional checks per Garmin GTN-series or Avidyne IFD-series moving-map navigation display Pilot’s Guide.

7. Install aft left back rest assembly per § 25-22.

E. Configuration

Make the following selections for R66 installation:

<table>
<thead>
<tr>
<th>Field</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Port</td>
<td>Autopopulated (may change depending on connection point to PC)</td>
</tr>
<tr>
<td>ARINC</td>
<td>Leave at defaults</td>
</tr>
<tr>
<td>Fuel Flow Parameters</td>
<td>Enabled</td>
</tr>
<tr>
<td>Engine Type</td>
<td>Single Engine</td>
</tr>
<tr>
<td>Engine 1 K Factor</td>
<td>See transducer*</td>
</tr>
<tr>
<td>Engine 2 K Factor</td>
<td>See transducer*</td>
</tr>
<tr>
<td>Fuel Density (lbs/Gal)</td>
<td>6.71</td>
</tr>
<tr>
<td>Serial Output Format</td>
<td>SHADIN_Z</td>
</tr>
</tbody>
</table>

* The K Factor is 1000 times the number printed on the transducer. For example, a transducer with a K Factor of 9.63 is configured as 9630.
28-23 Fuel Flow Meter Installation (continued)

F. Scheduled Maintenance

Every 12 Months:

 Transducer

 Visually inspect fuel control unit-to-transducer fuel tube connections, transducer, and reducer connections to transducer and check valve for evidence of leakage. Visually inspect components for any obvious damage; verify proper installation and security. Verify no damaged connectors. Verify wiring neatness, proper routing and installation, and security.

 Adapter

 Visually inspect adapter for any obvious damage; verify proper installation and security. Inspect wiring for loose, chafed, frayed, or broken wires. Verify no damaged connectors. Verify wiring neatness, proper routing and installation, and security.

G. Special Maintenance

 Transducer and Adapter

 Refer to configuration procedure per Part E. Determine K-factor printed on the transducer; verify adapter is configured properly. Perform 100-Hour/Annual inspection per Part F.
FIGURE 28-4 FUEL VALVE
28-30 Fuel Valve

A. Removal

1. Defuel helicopter per § 12-42.
3. Disconnect D205-21 and B283-12 hose assemblies from fuel valve and cap fittings.
4. Remove screws and washers securing fuel valve to F233-1 firewall and remove fuel valve through sump drain access door.

B. Installation

2. Remove caps and connect D205-21 and B283-12 hose assemblies to fuel valve. Special torque hose nuts per § 20-33 and torque stripe per Figure 5-1.
4. Perform fuel flow check per § 28-40.

28-31 Fuel Valve Control Rigging

2. Open baggage compartment door. As required, loosen hardware securing AN742-3 clamps and control housing to G915-3 bracket. Position end of control housing flush to 0.25 inch at or beyond edge of G244-1 panel and install fasteners. Verify security.
3. Refer to detail in Figure 76-3. Push fuel valve into on position then pull up slightly to create 0.03-0.10 clearance under control knob. Position fuel valve arm in full open detent. Verify sufficient inner wire beyond outboard edge of fitting and special torque fitting nut per § 20-33.
4. Pull fuel valve into off position and verify valve arm fully contacts OFF detent. Push fuel valve into on position and verify valve arm fully contacts ON detent, meeting clearance requirement. Reposition fitting per previous steps, as required.
5. Install fitting palnut, standard torque per § 20-32, and torque stripe per Figure 5-1. Trim control wire 0.10-0.30 inch beyond aft edge of fitting.
28-40 Fuel Flow Check

2. Refer to Figure 28-1. Attach a temporary hose to one of the vent weldment openings. With the fuel cap installed, blow into the hose (do not use compressed air) and verify air blows out the other vent opening. If air does not blow out the other vent, remove obstruction(s) in vent line(s) or in fuel bladder and repeat check.

3. Defuel helicopter per § 12-42, then service helicopter with 19.4 gallons of fuel per § 12-41.

4. Weigh a suitable, empty container having a volume of at least one gallon. Record weight of empty container in table below.

5. Pull fuel valve into off position and disconnect B283-12 hose assembly from the engine fuel inlet fitting.

6. Using a second, suitable container, push fuel valve into on position and drain fuel into second container for a few seconds to purge system of air. Then fill the weighed container for 60 seconds. Weigh and record weight of empty container & 60 seconds of fuel flow in table below.

7. Perform the following calculation:

 Combined weight of empty container & 60 seconds fuel flow: _________ lb

 Subtract Weight of empty container: − _________ lb

 Equals Weight of 60 seconds fuel: = _________ lb

8. Minimum fuel flow (at 19.4 gallons of fuel) is 4.75 lb/min (60 seconds). If fuel flow is less than 4.75 lb/min, remove obstruction(s) in vent line(s), fuel bladder, fuel hoses, fuel valve, or fuel strainer (inside bladder at outlet), and repeat check until fuel flow is satisfactory.

FIGURE 28-5 AUX FUEL SYSTEM (LARGE TANK SHOWN)

Aux fuel pump time-delay circuit
An optical sensor illuminates the control panel NO FLOW light when pump switch is on but fuel transfer rate is less than 10 gallons per hour. A time-delay automatically switches the pump off.

Aux fuel tank quantity
There is one fuel quantity gage for R66. Depressing the control panel QUANTITY button indicates fuel quantity in aux tank instead of main system.

G768 Panel
Panel and installation dependent on console/configuration.

Aux fuel tank removal
Flight is permissible without aux tank installed, and a fuel tank support assembly may also be removed. Fuel hoses must be stowed according to Maintenance Manual instructions. A loose parts kit is provided to facilitate tank removal and installation.
A. Description

The auxiliary fuel system consists of a removable fuel tank located in the forward section of the baggage compartment, hoses connecting the auxiliary tank to the main fuel tank, and a small control panel on the instrument console.

The auxiliary fuel tank includes a crash-resistant bladder in an aluminum and fiberglass enclosure, an internal fuel transfer pump, a quantity sender, a filler port, and a sump drain. The filler port and sump drain are accessed by opening the baggage door. The tank mounts on a separate fiberglass tray which is also removable.

The pump transfers fuel to the main tank at approximately 40 gallons per hour (150 liters per hour). Venting is provided through a second hose connected to the main tank. If the main tank is full, any excess fuel transferred by the pump returns to the auxiliary tank through the vent hose.

A fuel flow sensor is located at the fitting where transferred auxiliary fuel enters the main tank (hose connection near the main tank filler port). The sensor illuminates the NO FLOW light on the control panel when the pump switch is on but the fuel transfer rate is less than ten gallons per hour.

The AUX FUEL control panel on the console includes a pump switch, a NO FLOW annunciator light, and a QUANTITY button. The pump switch engages the transfer pump. When the pump switch is on, the NO FLOW light indicates fuel is not transferring from auxiliary tank to the main tank, either because the auxiliary tank is empty or the pump has failed. It is normal for the light to illuminate for approximately five seconds when the pump is first switched on while the system is priming.

A time-delay circuit automatically switches the pump off if the NO FLOW light is illuminated for more than 15 seconds. The light will remain on even after the time delay has removed power from the pump. Turning the pump switch off will extinguish the light.

While the QUANTITY button is depressed, the fuel quantity gage indicates fuel quantity in the auxiliary tank instead of the main tank. The NO FLOW light also comes on while the QUANTITY button is depressed to provide a test of the circuit and to confirm that the auxiliary tank quantity is being displayed on the fuel gage.

The auxiliary fuel tank has two drains through the belly of the helicopter. Any fuel spilled at the filler port is collected by the surrounding scupper and drains through a hose into the outboard belly drain location. The tank support tray has a drain at the inboard drain location. Fuel leaking from the inboard drain indicates a possible leak in the fuel bladder.

A sump drain hose stowed vertically along the right side of the tank allows preflight fuel sampling from the low point of the tank. To sample fuel, extend hose away from the helicopter and push in on the valve. The valve may be locked open to allow draining of the tank.

28-50 Aux Fuel System (continued)

A. Description (continued)

Operationally, the fuel transfer pump may be switched on any time at the pilot’s discretion. If the main tank is full, any excess fuel transferred from the auxiliary tank will return through the vent/return hose. Note that fuel in the auxiliary tank is not considered usable for flight planning purposes because the fuel transfer system has no redundancy in case of pump failure.

The auxiliary fuel tank may be removed to provide additional baggage space. The separate support tray may also be removed. A small container which may be clipped to the outboard side of the tank is provided for stowing installation hardware.

28-51 Aux Fuel System – Tank Assembly

A. Removal

1. Defuel aux fuel tank per § 12-42.

2. Turn battery switch off and pull out (5 amp) AUX FUEL PUMP circuit breaker at panel. Open main baggage compartment door.

3. Disconnect G768-4 harness assembly from airframe harness at connectors.

4. Using a back-up wrench, disconnect D205-36 (vent/return) and D205-36 (pump) hose assemblies from aux tank fittings in G759-1 cover assembly. Install AN820-6 or AN929-6 caps (included in MT183-1 kit) on aux tank fittings. Install AN806-6D plugs (included in MT183-1 kit) on hose fittings, special torque plugs to 120 in.-lb, and stow hoses in G769-1 bracket assembly.

5. Remove B526-6 screws securing G010 aux tank assembly to G259-1 bulkhead and G251-1 panel. Remove tank assembly using straps.

NOTE

Flight is permissible without G010 aux tank assembly installed when (2) AN806-6D plugs installed on D205-36 hose assemblies and hoses are stowed in G769-1 bracket assembly (see above instructions).

6. As required, revise Weight and Balance Record in R66 Pilot’s Operating Handbook (POH) Section 6 to reflect aux tank assembly removal using the following data:

Subtract:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Long. Arm</th>
<th>Long. Moment</th>
<th>Lat. Arm</th>
<th>Lat. Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Aux Tank Assy</td>
<td>−30.0 lb</td>
<td>101.0 in.</td>
<td>−3030.0 in.-lb</td>
<td>1.5 in.</td>
<td>−45.0 in.-lb</td>
</tr>
<tr>
<td>Small Aux Tank Assy</td>
<td>−23.0 lb</td>
<td>96.8 in.</td>
<td>−2226.4 in.-lb</td>
<td>3.5 in.</td>
<td>−80.5 in.-lb</td>
</tr>
</tbody>
</table>
Chapter 28 Fuel System

28-51 Aux Fuel System – Tank Assembly (continued)

B. Installation

1. Turn battery switch off and pull out (5 amp) AUX FUEL PUMP circuit breaker at panel. Open main baggage compartment door.

2. Position G010 aux tank assembly on G755 support assembly (tank pin will align with relief in support); route drain tube into floor weldment. Install B526-6 screws securing aux tank to G259-1 bulkhead and G251-1 panel. Verify security.

3. Remove AN820-6 or AN929-6 caps from aux tank fittings in G759-1 cover assembly, and AN806-6D plugs from D205-36 (vent/return) and D205-36 (pump) hose assemblies. Stow caps and plugs in MT183-1 kit’s jar assembly.

4. Connect hose assemblies to aux tank fittings. Using a back-up wrench on fittings, special torque hose nuts per § 20-33, & torque stripe per Figure 5-1. Verify security.

5. Connect G768-4 harness assembly to airframe harness at connectors. Verify security.

6. As required, revise Weight and Balance Record in R66 Pilot’s Operating Handbook (POH) Section 6 to reflect aux tank assembly installation using the following data:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Long. Arm</th>
<th>Long. Moment</th>
<th>Lat. Arm</th>
<th>Lat. Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Aux Tank Assy</td>
<td>30.0 lb</td>
<td>101.0 in.</td>
<td>3030.0 in.-lb</td>
<td>1.5 in.</td>
<td>45.0 in.-lb</td>
</tr>
<tr>
<td>Small Aux Tank Assy</td>
<td>23.0 lb</td>
<td>96.8 in.</td>
<td>2226.4 in.-lb</td>
<td>3.5 in.</td>
<td>80.5 in.-lb</td>
</tr>
</tbody>
</table>

7. Fuel as required per § 12-41.

8. Turn battery switch on and push in (5 amp) AUX FUEL PUMP circuit breaker at panel. Turn pump switch on and inspect vent/return, pump, and sump drain hose assemblies where they connect to tank. Verify no fuel leaks.

9. Turn pump and battery switches off. Close and secure main baggage compartment door.
28-52 Aux Fuel System – Support Assembly

A. Removal

1. Remove aux fuel tank per § 28-51.

2. Remove B526-6 screws securing G755 support assembly to bulkhead and remove B536-8 screws securing support assembly to floor. Carefully remove support.

NOTE

Flight is permissible without G010 aux tank assembly installed when (2) AN806-6D plugs installed on D205-36 hose assemblies and hoses are stowed in G769-1 bracket assembly (refer to § 28-51). G755 support assembly installation is optional when tank is removed.

3. As required, revise Weight and Balance Record in R66 Pilot’s Operating Handbook (POH) Section 6 to reflect support assembly removal using the following data:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Long. Arm</th>
<th>Long. Moment</th>
<th>Lat. Arm</th>
<th>Lat. Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Tank Support Assy</td>
<td>−3.0 lb</td>
<td>101.0 in.</td>
<td>−303.0 in.-lb</td>
<td>−1.2 in.</td>
<td>3.6 in.-lb</td>
</tr>
<tr>
<td>Small Tank Support Assy</td>
<td>−2.0 lb</td>
<td>96.8 in.</td>
<td>−193.6 in.-lb</td>
<td>−0.4 in.</td>
<td>0.8 in.-lb</td>
</tr>
</tbody>
</table>

B. Installation

1. Verify baggage compartment floor where G755 support assembly is to be installed is free of debris. Position support assembly on floor.

2. Install B526-6 screws securing support assembly to bulkhead and install B536-8 screws securing support assembly to floor. Verify security.

3. As required, revise Weight and Balance Record in R66 Pilot’s Operating Handbook (POH) Section 6 to reflect support assembly installation using the following data:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>Long. Arm</th>
<th>Long. Moment</th>
<th>Lat. Arm</th>
<th>Lat. Moment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Tank Support Assy</td>
<td>3.0 lb</td>
<td>101.0 in.</td>
<td>303.0 in.-lb</td>
<td>−1.2 in.</td>
<td>−3.6 in.-lb</td>
</tr>
<tr>
<td>Small Tank Support Assy</td>
<td>2.0 lb</td>
<td>96.8 in.</td>
<td>193.6 in.-lb</td>
<td>−0.4 in.</td>
<td>−0.8 in.-lb</td>
</tr>
</tbody>
</table>

4. Install aux fuel tank per § 28-51 or refer to NOTE in Part A.
28-53 Aux Fuel System – Bladder

CAUTION
Avoid contaminating bladder interior. Cover arms with sleeves and use lint-free gloves when working inside bladder.

A. Removal

1. Remove aux fuel tank per § 28-51.

3. Remove fuel quantity sender per § 28-21.

4. Remove screws securing G759-1 cover assembly and bladder to enclosure. Lift cover and inside bladder, release clamp securing drain tube to fitting. Inside bladder, remove screws securing G764-1 drain weldment and G765-1 pump assembly to bladder. Remove weldment, pump, and tubes with connected cover assembly.

5. Remove screws securing G758-1 cover to enclosure assembly. Remove G762-12 hinge. Guide cover clear of strap and remove cover.

6. Detach bladder hook tape from enclosure loop tape and remove bladder. Tape bladder openings.

B. Installation

1. Fold forward, aft, and left sides of G756 bladder inward; align bladder’s G759-4 ring assembly with G754 enclosure assembly’s servicing panel to clear strap, and press bottom of bladder to enclosure’s tray. Unfold bladder, and align bladder and enclosure hook and loop tape.

 CAUTION
 Verify bladder is free of wrinkles across lower surface and properly located before attaching hook and loop tape. Bladder may be pressurized with air to 1 psi max to assist installation.

2. Remove tape protecting bladder openings. Insert a clean, smooth, blunt wooden dowel through bladder service opening and press on bladder lower surface to attach hook and loop tape. Verify security.

B. Installation (continued)

4. Position G765-1 pump assembly, G764-1 drain weldment, and tubes (with connected G759-1 cover assembly) inside bladder and install screws. Verify security.

5. Inside bladder, install clamp securing drain tube to fitting. Verify security.

6. Install screws securing bladder and G762-11 scupper to enclosure at drain. Verify security.

7. Connect D205 (drain) hose assembly to drain fitting, aligning hose 8.5° ± 5.0° from parallel with edge of enclosure’s G757-1 tray. Using a back-up wrench, special torque hose nut per § 20-33, and torque stripe per Figure 5-1. Secure hose near drain valve at tab. Install MS336-7-9 ty-rap securing scupper to hose. Cinch ty-rap until snug without overtightening, and trim tip flush with head.

8. Apply light coat A257-9 anti-seize to screw threads and install screws securing G759-1 cover and bladder to enclosure. Verify security.

10. Install aux fuel tank per § 28-51.
Intentionally Blank
28-54 Aux Fuel System – Fuel Quantity Sender

Refer to § 28-21 for fuel quantity sender maintenance instructions.

28-55 Aux Fuel System – Pump Assembly

CAUTION
Avoid contaminating bladder interior. Cover arms with sleeves and use lint-free gloves when working inside bladder.

A. Removal

1. Defuel aux fuel tank per § 12-42.

2. Turn battery switch off and pull out (5 amp) AUX FUEL PUMP circuit breaker at panel. Open main baggage compartment door.

3. Disconnect G768-4 harness assembly from airframe harness at connectors.

4. Using a back-up wrench, disconnect D205-36 (vent/return) and D205-36 (pump) hose assemblies from aux tank fittings in G759-1 cover assembly. Temporarily cap and plug fittings (AN820-6 and AN929-6 caps, and AN806-6D plugs are included in MT183-1 kit).

5. Refer to Figure 28-7. Remove screws securing G759-1 cover assembly and G756 bladder to G754 enclosure assembly. Lift cover and inside bladder, release clamp securing A729-73 tube to drain fitting. Inside bladder, remove screws securing G764-1 drain weldment and G765-1 pump assembly to bladder. Remove weldment, pump, and tubes with connected cover assembly. Tape opening to prevent contamination of bladder interior.

FIGURE 28-7 FUEL PUMP

Detail A
- Install clamp so prongs point opposite of wiring.
- A729-73 Tube
- A729-74 Tube
- B161-108 Spirap
- A729-72 Tube (orient as shown)
- 1.00–3.00 inches
- 0.50 inch minimum
- 0.050 inch maximum
- 0.48 ± 0.05 inch

Detail B
- Bladder (Ref)
- Strainer (orient as shown)

Detail A
- G765-1 Pump assembly
- View looking down
- G764-1 Drain weldment

Detail B
- Cover assembly
- Aux fuel pump wiring
- Enclosure assembly
- Bladder
- A729-74 Tube
- Fuel quantity sender (Ref)
- Aux fuel pump (Ref)
- A729-73 Tube
- Clamp
- Drain fitting

FORWARD

Page 28.26
Chapter 28 Fuel System
JUL 2020
B. Installation

1. Turn battery switch off and pull out (5 amp) AUX FUEL PUMP circuit breaker on circuit breaker panel. Open main baggage compartment door.

2. Remove tape from opening of G756 bladder. Verify bladder is free of wrinkles across lower surface of tank and is properly located.

3. Refer to Figure 28-7. Position G764-1 drain weldment with attached tubes (without pump) in bladder and temporarily secure with screws. Verify with flashlight and mirror bottom end of A729-72 tube contacts bladder as shown. Adjust tube and repeat step as required. Remove weldment with attached tubes.

4. Position A729-74 tube on G765-1 pump assembly as shown; install D277-8 clamp so prongs point opposite of wiring. Verify security. Run pump wiring along tube and secure with B161-108 spirap as shown; ensure there is 1.00–3.00 inches between spirap and clamp.

5. Place drain weldment with attached tubes on pump assembly and position weldment and pump inside bladder; verify strainer is positioned as shown and install mounting screws. Verify security.

6. Connect A729-73 tube to drain fitting and install D277-8 clamp; verify security. Connect A729-74 tube to G759-1 cover assembly, install D277-8 clamp, and ensure there is 1.00–3.00 inches between spirap and clamp; verify security. Install hardware securing pump connector to cover; verify security.

7. Install screws securing cover and bladder to G754 enclosure assembly; verify security.

8. Remove AN820-6 or AN929-6 caps from aux tank fittings in G759-1 cover assembly, and AN806-6D plugs from D205-36 (vent/return) and D205-36 (pump) hose assemblies. Stow caps and plugs in MT183-1 kit’s jar assembly.

9. Connect hose assemblies to aux tank fittings. Using a back-up wrench on fittings, special torque hose nuts per § 20-33, and torque stripe per Figure 5-1. Verify security.

10. Connect G768-4 harness assembly to G768-1 harness assembly at connectors. Verify security.

12. Using ground power or during flight check, switch on aux pump and verify no flow light extinguishes in less than 15 seconds. Continue timing from when pump was switched on and verify light re-illuminates (aux fuel is transferred to main tank) in less than 16 minutes. Verify aux fuel quantity indication is empty after light re-illuminates.
Intentionally Blank