OPTIONAL EQUIPMENT SUPPLEMENTS

The applicable supplement is required to be included in the helicopter’s Pilot’s Operating Handbook when any of the following equipment is installed. Information contained in the supplements applies only when the related equipment is installed.

CONTENTS

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Floats</td>
<td>9-5.1</td>
</tr>
<tr>
<td>Heated Pitot</td>
<td>9-6.1</td>
</tr>
<tr>
<td>Air Conditioning</td>
<td>9-11.1</td>
</tr>
<tr>
<td>ADS-B Equipment</td>
<td>9-12.1</td>
</tr>
<tr>
<td>Autopilot</td>
<td>9-13.1</td>
</tr>
<tr>
<td>Optional Avionics</td>
<td>9-14.1</td>
</tr>
</tbody>
</table>

NON-U.S. SUPPLEMENTS

The following supplements contain additional information required by certain countries:

Brazilian Supplement
Canadian Supplement
CIS Supplement
EASA Supplement
IAC AR Supplement
Ukrainian Supplement
INTENTIONALLY BLANK
FAA APPROVED
R44 CADET PILOT’S OPERATING HANDBOOK

FIXED FLOATS SUPPLEMENT

This supplement must be included in the FAA-approved Pilot’s Operating Handbook when fixed-float landing gear is installed.

The information contained herein supplements or supersedes the basic manual only in those areas listed in this supplement. For limitations, procedures, and performance information not contained in this supplement, consult the basic Pilot’s Operating Handbook.

APPROVED BY:
Manager, Flight Test Branch, ANM-160L
Federal Aviation Administration, LAACO
Transport Airplane Directorate

DATE: April 29, 2016

LOG OF PAGES

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Date</th>
<th>Page No.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-5.1</td>
<td>29 Apr 16</td>
<td>9-5.7</td>
<td>29 Apr 16</td>
</tr>
<tr>
<td>9-5.2*</td>
<td>29 Apr 16</td>
<td>9-5.8</td>
<td>29 Apr 16</td>
</tr>
<tr>
<td>9-5.3</td>
<td>29 Apr 16</td>
<td>9-5.9</td>
<td>29 Apr 16</td>
</tr>
<tr>
<td>9-5.4</td>
<td>29 Apr 16</td>
<td>9-5.10*</td>
<td>29 Apr 16</td>
</tr>
<tr>
<td>9-5.5</td>
<td>29 Apr 16</td>
<td>9-5.11*</td>
<td>29 Apr 16</td>
</tr>
<tr>
<td>9-5.6</td>
<td>29 Apr 16</td>
<td>9-5.12*</td>
<td>29 Apr 16</td>
</tr>
</tbody>
</table>

* Manufacturer’s data, not FAA approved.
SECTION 1: GENERAL

INTRODUCTION

This supplement contains the changes and additional data applicable when fixed-float landing gear is installed.

Float landing gear is intended for safety during flights over water. Intentional water landings for other than training purposes are not recommended.

NOTE

The float landing gear is approved for amphibious operation but is not certified for ditching. Some countries may prohibit certain over-water operations.
SECTION 2: LIMITATIONS

FLOAT PRESSURE LIMITS

Minimum Float Pressure: 1.5 psig (psi gage)
Maximum Float Pressure: 5 psig

A decrease in altitude or temperature reduces float pressure. If decrease in altitude or temperature is anticipated, inflate floats per chart below to ensure 1.5 psig minimum at landing. Pressure relief valves will limit pressure for an increase in altitude or temperature.

EXAMPLE:

<table>
<thead>
<tr>
<th>Conditions at destination:</th>
<th>Altitude</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial conditions:</td>
<td>1000 ft</td>
<td>15°C</td>
</tr>
<tr>
<td>Subtract to obtain change</td>
<td>5500 ft</td>
<td>5°C</td>
</tr>
<tr>
<td>in altitude and temp:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using graph, locate –4500 ft line, read across to +10°C line, then down for minimum initial float pressure required, approximately 3.2 psig.

CAUTION

Failure to maintain adequate pressure can result in loss of buoyancy or in-flight instability.
SECTION 3: EMERGENCY PROCEDURES

POWER FAILURE – GENERAL

CAUTION

Lowering collective rapidly or applying excessive forward cyclic while helicopter is moving forward on water can cause floats to submerge and helicopter to nose over.

POWER FAILURE ABOVE 500 FEET AGL

Autorotation to Land: Same as in basic manual.

Autorotation to Water:

1. Lower collective immediately to maintain rotor RPM.
2. Establish steady glide at approximately 70 KIAS.
3. Adjust collective to keep RPM between 97 and 108% or apply full down collective if light weight prevents attaining above 97%.
4. If altitude permits, maneuver into wind.
5. At about 40 feet AGL, begin cyclic flare.
6. At about 8 feet AGL, apply forward cyclic and raise collective just before touchdown. Touch down in slight nose high attitude with nose straight ahead.
7. Maintain cyclic in touchdown position and do not lower collective full down until forward motion has stopped.
SECTION 3: EMERGENCY PROCEDURES (cont’d)

POWER FAILURE BETWEEN 8 FEET AND 500 FEET AGL

Autorotation to Land: Same as in basic manual.

Autorotation to Water:

1. Lower collective immediately to maintain rotor RPM.
2. Adjust collective to keep RPM between 97 and 108% or apply full down collective if light weight prevents attaining above 97%.
3. If altitude permits, maneuver into wind.
4. Maintain airspeed until water is approached, then begin cyclic flare.
5. At about 8 feet AGL, apply forward cyclic and raise collective just before touchdown. Touch down in slight nose high attitude with nose straight ahead.
6. Maintain cyclic in touchdown position and do not lower collective full down until forward motion has stopped.

MAXIMUM GLIDE DISTANCE CONFIGURATION

Same as without floats, except airspeed approximately 80 KIAS.

EMERGENCY WATER LANDING – POWER OFF

See procedures for power failures.

EMERGENCY WATER LANDING – POWER ON

Make normal approach and landing to water.
SECTION 4: NORMAL PROCEDURES

DAILY OR PREFLIGHT CHECKS

15. Inflatable Floats
 Float Pressure Check (See Section 2)
 Float Condition Check

CAUTION

Helicopters equipped with inflated floats have an adverse roll characteristic. When sideslipping nose left or right, helicopter will tend to roll in opposite direction and could cause loss of control. To avoid adverse roll, keep helicopter trimmed with zero sideslip. Exercise extreme caution when performing simulated power failures.

CAUTION

Avoid night flight over water beyond autorotation distance to land. Height above water may be difficult to judge during a water landing.
OPERATION ON WATER

Safe operation on water has been demonstrated in waves up to 1 foot (0.3 m) (trough to crest). Maximum recommended water taxi speed is 5 knots. Some application of collective is required.

Since the helicopter sits very low on water, it is likely that water will leak into the cabin. Intentional water landings should be limited to training. For training, seal the removable belly panels and landing gear cross tube cover using aluminum foil tape or duct tape. Avoid salt water if possible.

There may be limited tail rotor clearance to water, particularly at aft CG. Also, even small waves may cause enough rocking to dip the tail rotor in the water. If tail rotor contact with water is suspected, have tail rotor inspected prior to further flight. (If no noticeable change in vibration occurs after suspected water contact, helicopter may be repositioned to nearest convenient inspection site.)

CAUTION

If starting or stopping rotor on water, ensure area is clear as helicopter can rotate one or more complete turns while tail rotor RPM is low.
SECTION 4: NORMAL PROCEDURES (cont’d)

PRACTICE AUTOROTATION – WITH GROUND CONTACT

Same as in basic manual. Autorotations should only be performed to a smooth, hard surface to avoid damage to floats.

PRACTICE AUTOROTATION TO WATER

Same as practice autorotation with ground contact in basic manual except touch down in slight nose high attitude with nose straight ahead. Maintain cyclic in touchdown position and do not lower collective full down until forward motion has stopped.

CAUTION

Lowering collective rapidly or applying excessive forward cyclic while helicopter is moving forward on water can cause floats to submerge and helicopter to nose over.

CAUTION

There may be limited tail rotor clearance to water, particularly at aft CG. Applying excessive aft cyclic may cause tail rotor to contact water.
SECTION 5: PERFORMANCE

AIRSPEED CALIBRATION CURVE

R44 CADET WITH FIXED FLOAT LANDING GEAR

NOTE: INDICATED AIRSPEED ASSUMES ZERO INSTRUMENT ERROR
SECTION 6: WEIGHT AND BALANCE

CAUTION

When changing between float and non-float configurations, weight and balance must be revised and autorotation RPM readjusted per the maintenance manual.

WEIGHT AND BALANCE RECORD

Basic empty weight and CG in float and non-float configurations is included in the Weight and Balance Summary provided with the helicopter. Modifications are to be recorded in the Weight and Balance Record.

SECTION 7: SYSTEMS DESCRIPTION

The fixed-float landing gear installation includes inflated floats, additional airframe sealing and corrosion protection, additional forward position lights in the mast fairing, longer landing gear struts, and an additional stabilizer installed at the base of the lower vertical stabilizer. Standard landing gear may be installed in place of the float landing gear per maintenance manual instructions.
SECTION 8: HANDLING AND MAINTENANCE

GROUND HANDLING

With floats installed, special ground handling wheels are required. Refer to R44 Maintenance Manual for wheel installation and removal procedures.

FLOAT TUBES

To promote long float tube life:

1. Do not inflate floats to higher pressure than required by limitations section. Do not arbitrarily inflate floats to relief valve pressure.

2. Reduce pressure in floats if solar heating is causing excessive pressure buildup.

3. Do not allow floats to sit uninflated. Maintain some pressure to keep shape when not in use.

CAUTION

When inflating chambers individually (without a manifold), increase pressure in each chamber in increments no greater than 0.5 psig.
SECTION 10: SAFETY TIPS

Flight characteristics and handling qualities with inflated floats are more critical than with conventional landing gear. Helicopters with floats installed have an adverse roll characteristic. When sideslipping nose right or left, the helicopter will tend to roll in the opposite direction out of the turn. This could be extremely dangerous if a pilot failed to apply right pedal or put in the wrong pedal during a simulated power failure. Also, aerodynamic lift produced by floats makes both RPM and pitch control more difficult during auto rotation entries. Helicopters with floats installed are also more gust sensitive and difficult to fly in turbulence.

For these reasons, it is strongly recommended that floats be removed and standard gear installed for primary flight instruction. With floats installed, pilots must keep the helicopter trimmed with zero sideslip and exercise extreme caution when performing simulated power failures.
HEATED PITOT SUPPLEMENT

This supplement must be included in the FAA-approved Pilot’s Operating Handbook when heated pitot is installed.

The information contained herein supplements or supersedes the basic manual only in those areas listed in this supplement. For limitations, procedures, and performance information not contained in this supplement, consult the basic Pilot’s Operating Handbook.

APPROVED BY: [Signature]
Manager, Flight Test Branch, ANM-160L
Federal Aviation Administration, LAACO
Transport Airplane Directorate

DATE: April 29, 2016

LOG OF PAGES

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Date</th>
<th>Page No.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-6.1</td>
<td>29 Apr 16</td>
<td>9-6.3</td>
<td>29 Apr 16</td>
</tr>
<tr>
<td>9-6.2</td>
<td>29 Apr 16</td>
<td>9-6.4*</td>
<td>29 Apr 16</td>
</tr>
</tbody>
</table>

* Manufacturer’s data, not FAA approved.
SECTION 1: GENERAL

INTRODUCTION

This supplement contains the changes and additional data applicable when the heated pitot is installed.

SECTIONS 2 and 3: No change.

SECTION 4: NORMAL PROCEDURES

USE OF PITOT HEAT

When conditions conducive to pitot ice exist, switch pitot heat on until landing or until no longer in potential icing conditions.

NOTE

The R44 is not certified for flight into known or suspected icing conditions.

NOTE

Continued use of pitot heat following an alternator failure will significantly increase battery drain.
SECTION 5: PERFORMANCE

Airspeed Calibration Curve

Heated Pitot Installation
Valid with Pitot Heat On or Off

FAA Approved: 29 Apr 2016
SECTION 6: WEIGHT AND BALANCE
No change.

SECTION 7: SYSTEMS DESCRIPTION

HEATED PITOT INSTALLATION
The heated pitot tube is installed in the mast fairing, replacing the standard pitot tube. Pitot heat is controlled by a toggle switch located to the right of the cyclic. Power is supplied to the heated pitot through its own 10-amp circuit breaker.

SECTION 8: HANDLING AND MAINTENANCE

CAUTION
Pitot tube becomes extremely hot with pitot heat switched on. Touching pitot tube after it has been on for more than 30 seconds can result in severe burns.
This supplement must be included in the FAA-approved Pilot’s Operating Handbook when cabin air conditioning is installed.

Information contained herein supplements or supersedes the basic manual only in those areas listed in this supplement. For limitations, procedures, and performance information not contained in this supplement, consult the basic Pilot’s Operating Handbook.

APPROVED BY: [Signature]
Manager, Flight Test Branch, ANM-160L
Federal Aviation Administration, LAACO
Transport Airplane Directorate

DATE: [Signature] April 29, 2016

LOG OF PAGES

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Date</th>
<th>Page No.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-11.1</td>
<td>29 Apr 16</td>
<td>9-11.3*</td>
<td>29 Apr 16</td>
</tr>
<tr>
<td>9-11.2</td>
<td>29 Apr 16</td>
<td>9-11.4*</td>
<td>29 Apr 16</td>
</tr>
</tbody>
</table>

* Manufacturer’s data, not FAA approved.
SECTION 1: GENERAL

INTRODUCTION

This supplement contains the changes and additional data applicable when cabin air conditioning is installed.

SECTION 2: LIMITATIONS

No change.

SECTION 3: EMERGENCY PROCEDURES

No change.

SECTION 4: NORMAL PROCEDURES

DAILY OR PREFLIGHT CHECKS

Add to item 9, Cowl door – Left Side:

Compressor belt tension Check

AIR CONDITIONING OPERATION

Air conditioning is controlled by the toggle switch at the forward end of the overhead duct. The switch allows selection of OFF, LOW, and HIGH fan settings. The compressor is automatically engaged by switching the fan on. Each of the six outlets may be directed as desired.

NOTE

Evaporator condensate drains from a tube through the aircraft belly. Water drainage during ground operation is normal.

SECTION 5: PERFORMANCE

No change.
SECTION 6: WEIGHT AND BALANCE

No change.

SECTION 7: SYSTEMS DESCRIPTION

The cabin air conditioning system consists of a compressor accessible through the left engine cowl door, a condenser mounted on the left side of the engine cooling fan scroll, an evaporator and fan assembly mounted to the aft cabin wall, an overhead outlet duct, and interconnecting lines and hoses. The system uses R-134a refrigerant.

The compressor is belt-driven from an engine accessory drive and equipped with an electromagnetic clutch. When the system is off, the compressor clutch is disengaged, allowing the compressor pulley to freewheel.

The evaporator fan draws warm cabin air through the evaporator inlet grill and evaporator where it is cooled. Cooled air is drawn through the fan and blown into the overhead duct.

The system is controlled by a toggle switch on the overhead duct which allows selection of off, low, and high fan settings. The compressor is automatically engaged by switching the fan on. A temperature switch disengages the compressor when evaporator temperature drops below freezing. Safety switches disengage the compressor if refrigerant leakage occurs or if refrigerant pressure is excessive. A full throttle switch disengages the compressor when the engine is near full throttle to ensure aircraft performance is not affected. The compressor clutch and fan circuits are protected by the A/C circuit breaker.
SECTION 8: HANDLING AND MAINTENANCE

Standard automotive-style charge ports are located inside the left engine cowl door. Normal charge is 1.00 to 1.25 lb R-134a refrigerant. Refer to R44 Maintenance Manual for complete system service procedures.

CAUTION

System must only be serviced by qualified personnel following maintenance manual procedures.
This supplement must be included in the FAA-approved Pilot’s Operating Handbook when ADS-B equipment is installed.

The information contained herein supplements or supersedes the basic manual only in those areas listed in this supplement. For limitations, procedures, and performance information not contained in this supplement, consult the basic Pilot’s Operating Handbook.

APPROVED BY: [Signature]
Manager, Flight Test Branch, ANM-160L
Federal Aviation Administration, LAACO
Transport Airplane Directorate

DATE: June 27, 2016

LOG OF PAGES

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Date</th>
<th>Page No.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-12.1</td>
<td>27 JUN 16</td>
<td>9-12.4</td>
<td>27 JUN 16</td>
</tr>
<tr>
<td>9-12.2*</td>
<td>27 JUN 16</td>
<td>9-12.5</td>
<td>27 JUN 16</td>
</tr>
<tr>
<td>9-12.3*</td>
<td>27 JUN 16</td>
<td>9-12.6*</td>
<td>27 JUN 16</td>
</tr>
</tbody>
</table>

*Manufacturer’s data, not FAA approved.
SECTION 1: GENERAL

INTRODUCTION

This supplement contains the changes and additional data applicable when Automatic Dependent Surveillance-Broadcast (ADS-B) equipment is installed.

ADS-B is divided into two categories – ADS-B “Out” and ADS-B “In”.

ADS-B Out equipment transmits information to air traffic control to supplement radar/transponder information. The supplemental information allows optimization of flight plan routes and aircraft spacing.

ADS-B Out equipment may be required for operation in certain airspace. The R44 ADS-B Out installation has been shown to meet the requirements of 14 CFR § 91.227.

NOTE

The R44 ADS-B Out system operates on frequency 1090 MHz. This frequency is also accepted for ADS-B Out equipment in most countries outside the United States.

The ADS-B Out equipment consists of either a GPS receiver connected to the transponder or a transponder with built-in GPS. The transponder has ADS-B broadcast capability and broadcasts GPS position as well as additional preprogrammed information such as aircraft identification and type to air traffic control.

ADS-B In equipment receives traffic information from other ADS-B equipped aircraft. ADS-B In equipment may also receive additional traffic information and weather information from ground stations. The additional traffic and weather information from ground stations is only available in the United States.
SECTION 1: GENERAL (cont’d)

INTRODUCTION (cont’d)

The ADS-B In equipment consists of a receiver (either installed under the left, front seat or built in to the transponder) and a suitable display. Refer to receiver and display manufactures’ documentation for operation of ADS-B In equipment.

The R44 may be equipped with only ADS-B Out or with both ADS-B Out and ADS-B In.
SECTION 2: LIMITATIONS

PLACARDS

On transponder when ADS-B Out equipment is installed:

ADS-B OUT INSTALLED

SECTION 3: EMERGENCY PROCEDURES

No change.

SECTION 4: NORMAL PROCEDURES

ADS-B SYSTEM OPERATION

ADS-B system operation is mostly automatic and requires little pilot action. The GPS (if separate from the transponder), transponder, and ADS-B receiver (if installed) must all be powered and in normal operating modes for proper system function.

ADS-B OUT

The R44 ADS-B Out system is a single point of entry system. Mode 3/A codes, IDENT commands, and emergency codes are set on the transponder and are automatically incorporated in ADS-B Out broadcasts. The transponder should transition to ALT mode after takeoff for proper ADS-B Out broadcasts.

ADS-B Out broadcasts may be selected off by using menus associated with the transponder FUNC key.

NOTE

ADS-B Out may be required in certain airspace. Do not turn off ADS-B Out unless directed by air traffic control.

Malfunctions in the ADS-B Out system are annunciated by various messages on the transponder and/or GPS screen (refer to manufacturers’ documentation).
SECTION 4: NORMAL PROCEDURES (cont’d)

ADS-B SYSTEM OPERATION (cont’d)

ADS-B IN

The ADS-B In receiver is either mounted underneath the left, front seat or is built in to the transponder. The receiver is powered by the Transponder/ADS-B circuit breaker.

ADS-B In data is sent from the receiver to a suitable display, often the primary GPS screen. The display may have dedicated traffic and weather views or may allow traffic and weather information to be overlaid on other data such as moving maps. Warnings such as traffic conflicts may also appear on the display. Refer to receiver and display manufacturers’ documentation.

SECTION 5: PERFORMANCE

No change.
SECTION 7: SYSTEM DESCRIPTION

ADS-B SYSTEM

The ADS-B Out system consists of either a GPS receiver connected to the transponder or a transponder with built-in GPS. The transponder broadcasts the aircraft’s position, identification, and certain other parameters to air traffic control. ADS-B data is broadcast via the Extended Squitter (ES) feature of the transponder on a frequency of 1090 MHz. Note that change of aircraft registration may require update of preprogrammed parameters by qualified maintenance personnel.

Most of the data required for ADS-B broadcast such as aircraft type, ICAO address, and call sign are pre-programmed at installation. Flight-specific data such as Mode 3/A code and IDENT are entered using the transponder controls. The transponder uses these codes simultaneously for standard transponder as well as ADS-B broadcasts. There is no need to make a second code entry or to enter a code more than once. This is known as a “single point of entry” ADS-B system.

The ADS-B In system consists of a receiver (either mounted under the left, front seat or built in to the transponder) and a suitable display. The receiver receives both approved US ADS-B frequencies (978 MHz and 1090 MHz).

SECTION 8: HANDLING, SERVICING AND MAINTENANCE

No change.
FAA APPROVED
R44 CADET PILOT’S OPERATING HANDBOOK

AUTOPilot SUPPLEMENT

This supplement must be included in the FAA-approved Pilot’s Operating Handbook when the autopilot is installed.

The information contained herein supplements or supersedes the basic manual only in those areas listed in this supplement. For limitations, procedures, and performance information not contained in this supplement, consult the basic Pilot’s Operating Handbook.

APPROVED BY:
Manager, Flight Test Branch, ANM-160L
Federal Aviation Administration, LAACO
Transport Airplane Directorate

DATE: April 29, 2016

LOG OF REVISIONS

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Date</th>
<th>Page No.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-13.1</td>
<td>24 Feb 17</td>
<td>9-13.6*</td>
<td>29 Apr 16</td>
</tr>
<tr>
<td>9-13.2</td>
<td>29 Apr 16</td>
<td>9-13.7*</td>
<td>29 Apr 16</td>
</tr>
<tr>
<td>9-13.3</td>
<td>24 Feb 17</td>
<td>9-13.8*</td>
<td>29 Apr 16</td>
</tr>
<tr>
<td>9-13.4</td>
<td>29 Apr 16</td>
<td>9-13.9*</td>
<td>24 Feb 17</td>
</tr>
<tr>
<td>9-13.5*</td>
<td>29 Apr 16</td>
<td>9-13.10*</td>
<td>24 Feb 17</td>
</tr>
</tbody>
</table>

* Manufacturer’s data, not FAA approved.

REVISIONS
APPROVED BY:
Manager, Flight Test Branch, ANM-160L
Federal Aviation Administration, LAACO
Transport Airplane Directorate

DATE: February 29, 2017
SECTION 1: GENERAL

INTRODUCTION

This supplement contains the changes and additional data applicable when the autopilot is installed.

CAUTION

The autopilot is intended to enhance safety by reducing pilot workload. It is not a substitute for adequate pilot skill nor does it relieve the pilot of the responsibility to maintain adequate outside visual reference.

The primary autopilot mode is Stability Augmentation System (SAS) mode which maintains a steady helicopter attitude by applying corrective inputs to the cyclic. The autopilot does not provide any collective or pedal inputs. Additional modes providing heading hold, altitude hold, and navigation functionality are also selectable.

SECTION 2: LIMITATIONS

FLIGHT AND MANEUVER LIMITATIONS

Minimum altitude for use of autopilot ALT mode is 200 feet AGL.

For practice instrument approaches, minimum altitude for use of autopilot VRT mode is 50 feet AGL.

Pilot’s hand must be on cyclic grip under the following conditions:

During autopilot engagement or intentional disengagement

At airspeeds less than 50 KIAS when less than 500 feet AGL
SECTION 3: EMERGENCY PROCEDURES

AUTOPILOT DISENGAGEMENT OR FAILURE

The autopilot is designed to automatically disengage if the system detects a fault. Disengagement is indicated by four beeps in the headset. If the autopilot does not automatically disengage, failure may be recognized by erratic cyclic control motion, abnormal cyclic stick forces, or deviations in pitch or roll.

1. Continue flight using manual control. If autopilot has not disengaged, manually disengage using cyclic AP OFF button or control panel SAS button.

2. If SAS annunciator on control panel is steady white, re-engagement may be attempted at pilot’s discretion.

NOTE

The system automatically switches off all modes except SAS mode at airspeeds below 44 KIAS or above 130 KIAS, accompanied by a single beep. This is by design and not a system failure. The high speed limit is not intended to provide V_{ne} protection. It is the pilot’s responsibility to observe V_{ne} limits.

SECTION 4: NORMAL PROCEDURES

GENERAL

Autopilot controls and operating modes are described in Section 7, Systems Description.

NOTE

Cyclic friction must be fully off for autopilot to work properly. Cyclic friction will degrade autopilot performance.
SECTION 4: NORMAL PROCEDURES

STARTING ENGINE AND RUN-UP

After “Hydraulic system”, add:

Autopilot Check

NOTE

For autopilot check, wear headset and ensure cyclic friction is off. Engage SAS mode, and verify cyclic exhibits centering tendency and SAS annunciator on control panel turns green. Disengage. Verify 4 beeps in headset, cyclic reverts to normal hydraulic system feel, and SAS annunciator turns white.

TAKEOFF PROCEDURE

Autopilot SAS mode may be engaged as desired on the ground or at any time during the takeoff procedure. Retrim as necessary to eliminate undesirable cyclic forces.

CRUISE

Add:

Engage autopilot modes as desired. In SAS mode, retrim as necessary to eliminate undesirable cyclic forces.

CAUTION

It is the pilot’s responsibility to monitor flight controls, aircraft flightpath, traffic, and terrain even while the autopilot is engaged. Be prepared to take control if required.

SECTION 5: PERFORMANCE

No change.
SECTION 7: SYSTEMS DESCRIPTION

AUTOPILOT

The autopilot system consists of two electric servomotors, a flight control computer, an autopilot control panel, and control buttons on the cyclic grip. One servomotor controls pitch and is installed in the control tunnel forward of the cyclic stick. The other servomotor controls roll and is installed under the pilot’s seat. The servomotors are connected to the cyclic through electromagnetic clutches.

The flight control computer is installed on the forward panel under the pilot’s seat, and the autopilot control panel is installed in the avionics stack.

In addition to the autopilot system components, an onboard attitude source such as an Attitude Heading Reference System (AHRS) is required.

The primary autopilot mode is Stability Augmentation System (SAS) mode which maintains a steady helicopter attitude by applying corrective inputs to the cyclic. This is felt as a light cyclic centering force. The autopilot senses aircraft attitude using a combination of sensors in the flight control computer and the onboard attitude source. The computer then sends signals to the servomotors which are connected to the bottom of the cyclic in the control tunnel. Additional modes may be layered on top of SAS mode and are described below.
SECTION 7: SYSTEMS DESCRIPTION (cont’d)

AUTOPILOT (cont’d)

Heading Mode (HDG) – maintains the heading selected by the heading bug on the directional gyro or Horizontal Situation Indicator (HSI) display. Aircraft can be steered using the heading bug.

NOTE

For large heading or course changes, the autopilot will use a maximum of 20° bank.

Altitude Mode (ALT) – maintains altitude at the time of engagement or of last TRIM button release. The target altitude is reset each time the TRIM button is pressed and released.

NOTE

The autopilot uses pitch attitude to maintain altitude or follow an approach glidepath. It does not have any control of power setting. The pilot must manage power with the collective to control speed and rate of climb or descent. Make small, smooth power changes to allow the system to adjust to new power settings.

Navigation Mode (NAV) – tracks the active GPS or VLOC course displayed on the Course Deviation Indicator (CDI). If no CDI is installed, NAV will only track the active GPS course displayed on the GPS.

NAV may be armed prior to intercepting the active course. NAV annunciator is white when NAV is armed and turns green at course intercept. If HDG is active when NAV is armed, the autopilot will fly the selected heading until course intercept. If HDG is not active, the autopilot will select a 45° intercept angle.
SECTION 7: SYSTEMS DESCRIPTION (cont’d)

AUTOPILOT (cont’d)

Vertical Navigation Mode (VRT) – tracks an ILS glideslope or GPS approach vertical guidance. Arm VRT (annunciator turns white when armed) prior to intercepting the glidepath. VRT annunciator will turn green at glidepath intercept.

NOTE

Pushing the ALT button while VRT is armed or active will turn off VRT. VRT must be re-armed or re-engaged as desired.

NOTE

Reducing power to approach setting just prior to glidepath intercept is recommended.

Backcourse Mode (BC) – reverse CDI sensing for backcourse approaches. Course on HSI should be set so that tail of course pointer points toward runway (set to inbound front course).

The control panel has a row of buttons to control autopilot modes and annunciators to indicate mode status. A dark annunciator indicates that a mode is off, a white annunciator indicates that a mode is armed or on standby, and a green annunciator indicates that a mode is active.

When the avionics master is switched on, the autopilot performs a self-test and then enters SAS standby mode. All of the control panel indicators flash alternating white and green during the self-test. Four headset beeps occur at the beginning of the self-test as a check of the aural warning function. The SAS annunciator on the control panel turns steady white when the self-test is complete.

NOTE

Autopilot will not enter standby mode if attitude indicator is not functioning or indicated bank angle is greater than 6 degrees.
SECTION 7: SYSTEMS DESCRIPTION (cont’d)

AUTOPILOT (cont’d)

The autopilot SAS mode is engaged either by pressing the SAS button on the control panel or by pressing the TRIM button on the cyclic for more than 1.25 seconds. Additional modes are engaged by pressing the appropriate button on the control panel. The additional modes are disabled and will not engage at airspeeds below 44 KIAS or above 130 KIAS.

To disengage any mode, push the appropriate button on the control panel.

NOTE

Disengaging SAS mode will also disengage all other modes.

Modes may also be disengaged using the AP OFF button on the cyclic. If only SAS mode is engaged, push the AP OFF button once to disengage. If additional modes are engaged, push the AP OFF button once to disengage all modes except SAS and a second time to disengage SAS mode, or push and hold the AP OFF button to disengage all modes including SAS.

NOTE

SAS disengagement is always accompanied by four beeps in the headset.

Safety monitors automatically disengage individual modes or the entire system if a fault is detected. Automatic disengagement of SAS mode (or the entire system) is indicated by four beeps in the headset. Automatic disengagement of any mode other than SAS is indicated by a single beep in the headset. There is no audio indication for intentional disengagement of modes other than SAS.
NOTE

The system also automatically reverts to SAS mode at airspeeds below 44 KIAS or above 130 KIAS, accompanied by a single beep. The high speed limit is not intended to provide \(V_{ne} \) protection. It is the pilot’s responsibility to observe \(V_{ne} \) limits.

The TRIM button is used to re-set the target attitude (to re-trim) while in SAS mode. Use a small amount of force to override the autopilot and then push and release the TRIM button at the new desired condition. If the force to override is objectionable, the TRIM button may be held down during maneuvers. The system will re-trim to the attitude at which the TRIM button is released.

NOTE

The system will not re-trim to more than 6° nose down, 11° nose up, or 10° of bank. If a re-trim is attempted outside these limits, the system will trim to the limiting value.

NOTE

When engaging SAS mode from standby, the autopilot uses the helicopter attitude at the time SAS mode is engaged as the target (trim) attitude. For large pitch and roll angles at the time of engagement, a target of 2° nose up pitch and 0° (level) roll is used.

The autopilot is protected by a dedicated circuit breaker on the avionics bus (autopilot is not powered with the avionics master switch off).
SECTION 7: SYSTEMS DESCRIPTION (cont’d)

REMOVABLE FLIGHT CONTROLS

Disconnect the electrical connector for the left-hand trim button located near the quick release pin before removing the left cyclic grip. Reconnect the connector when installing the left cyclic grip.

SECTION 8: HANDLING AND MAINTENANCE

No change.

SECTION 10: SAFETY TIPS

The autopilot is intended to reduce pilot workload and enhance safety. It is important that pilots do not misuse this capability and allow their attention to be diverted. Pilots should continue monitoring the helicopter attitude and looking for traffic and other obstacles. Autopilot disengagement requires immediate pilot attention. Pilots must always be prepared to take manual control.

The autopilot is not certified for flight in Instrument Meteorological Conditions (IMC). Adhering to appropriate VFR weather minimums is essential for safety.

If an inadvertent loss of outside visual reference occurs, the pilot must regain visual conditions as quickly as possible while avoiding abrupt, disorienting maneuvers. The following procedure is recommended:

1. If not already engaged, immediately engage autopilot SAS mode and allow autopilot to recover from unusual attitude if one has occurred.

2. Select a heading and altitude to ensure terrain and obstacle clearance. Turns and/or climbs may be required. Engage additional autopilot modes as desired for workload reduction.

3. While maintaining terrain and obstacle clearance, maneuver toward conditions of improved visibility.
This supplement must be included in the FAA-approved Pilot’s Operating Handbook when certain factory-supplied optional avionics are installed.

Information contained herein supplements or supersedes the basic manual only in those areas listed in this supplement. For limitations, procedures, and performance information not contained in this supplement, consult the basic Pilot’s Operating Handbook.

APPROVED BY: [Signature]

Manager, West Flight Test Section, AIR-716
Federal Aviation Administration
Los Angeles, CA

DATE: May 7, 2018

LOG OF PAGES

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Date</th>
<th>Page No.</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-14.1</td>
<td>7 May 18</td>
<td>9-14.6*</td>
<td>7 May 18</td>
</tr>
<tr>
<td>9-14.2*</td>
<td>7 May 18</td>
<td>9-14.7*</td>
<td>7 May 18</td>
</tr>
<tr>
<td>9-14.3</td>
<td>7 May 18</td>
<td>9-14.8*</td>
<td>7 May 18</td>
</tr>
<tr>
<td>9-14.4*</td>
<td>7 May 18</td>
<td>9-14.9*</td>
<td>7 May 18</td>
</tr>
<tr>
<td>9-14.5*</td>
<td>7 May 18</td>
<td>9-14.10*</td>
<td>7 May 18</td>
</tr>
</tbody>
</table>

* Manufacturer’s data, not FAA approved.
SECTION 1: GENERAL

INTRODUCTION

This supplement provides additional information for certain avionics options. A set of manufacturers’ instructions for all installed avionics is provided with each new helicopter.

The following equipment is addressed in this supplement:

- Aspen Avionics EFD 1000H PFD and EFD 500H MFD
- Garmin G500H avionics system with non-touch screen display (GDU 620)
- Garmin G500H avionics system with touch screen display (GDU 1060 TXi or GDU 700L TXi)

NOTE

For all Robinson Primary Flight Display (PFD)/ Multi Function Display (MFD) installations, the airspeed indicator, altimeter, compass, tachometer, and engine instruments are retained. Pilots should use the traditional instruments as primary unless fully familiar with the installed avionics.
SECTION 2: LIMITATIONS
No change.

SECTION 3: EMERGENCY PROCEDURES
No change.

SECTION 4: NORMAL PROCEDURES
No change.

SECTION 5: PERFORMANCE
No change.

SECTION 6: WEIGHT AND BALANCE
No change.

SECTION 7: SYSTEMS DESCRIPTION
See below.

SECTION 8: HANDLING AND MAINTENANCE
No change.
SECTION 7: SYSTEMS DESCRIPTION

ASPEN EFD 1000H PFD AND EFD 500H MFD

The Aspen Electronic Flight Display (EFD) 1000H is a Primary Flight Display (PFD) optimized for helicopter use. It is available in a “Pilot” (basic) version or “Pro” (with more advanced navigation features) version.

The Aspen EFD 500H is a Multifunction Display (MFD) optimized for helicopter use.

Robinson configurations are either a single EFD 1000H PFD or a dual installation with one EFD 1000H PFD and one EFD 500H MFD. A typical dual-installation instrument panel is illustrated on the following page.

The manufacturer’s documents for the EFD 1000H and EFD 500H are:

<table>
<thead>
<tr>
<th>Title</th>
<th>Document No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspen Avionics Evolution Flight Display EFD 1000H PFD Pilot’s Guide</td>
<td>091-00012-001</td>
</tr>
<tr>
<td>Aspen Avionics Evolution Flight Display EFD 1000H/500H MFD Pilot’s Guide</td>
<td>091-00013-001</td>
</tr>
</tbody>
</table>

NOTE

A Robinson part no. D327-4 light filter may be used to reduce reflections in the windshield at night. The light filter is installed by clipping it to the front of the display. Filter use is at pilot discretion.
SECTION 7: SYSTEMS DESCRIPTION (cont’d)

1. AIRSPEED INDICATOR 21. ROTOR BRAKE LIGHT
2. ENGINE AND ROTOR TACHS 22. IGNITION SWITCH
3. ALTIMETER 23. CLUTCH ACTUATOR SWITCH
4. MANIFOLD PRESSURE GAGE 24. CARBURETOR AIR TEMP
5. CLOCK 25. OUTSIDE AIR TEMP/VOLTMETER
6. MULTI-FUNCTION DISPLAY 26. PANEL LIGHTS DIMMER
7. PRIMARY FLIGHT DISPLAY 27. ENGINE INSTRUMENTS
8. CLUTCH ACTUATOR LIGHT 28. CABIN HEAT
9. M.R. GEARBOX TEMP LIGHT 29. NAVIGATION LIGHTS SWITCH
10. M.R. GEARBOX CHIP LIGHT 30. ANTI-COLLISION LIGHT SWITCH
11. CARBON MONOXIDE LIGHT 31. AVIONICS MASTER SWITCH
12. STARTER-ON LIGHT 32. ALTERNATOR SWITCH
13. T.R. GEARBOX CHIP LIGHT 33. BATTERY SWITCH
14. LOW FUEL LIGHT 34. CABIN AIR
15. LOW RPM LIGHT 35. AVIONICS STACK
16. ALT LOW VOLTAGE LIGHT 36. CYCLIC FRICTION
17. ENGINE FIRE LIGHT 37. CARBURETOR HEAT
18. OIL PRESSURE LIGHT 38. ELT SWITCH (OPT’L)
19. GOVERNOR-OFF LIGHT 39. MIXTURE CONTROL
20. FULL THROTTLE LIGHT 40. PITOT HEAT SWITCH (OPT’L)

OPTIONAL INSTRUMENT PANEL WITH
ASPEN EFD 1000H PFD and EFD 500H MFD
(Exact panel configuration may vary with optional equipment and date of helicopter manufacture.)
SECTION 7: SYSTEMS DESCRIPTION (cont’d)

GARMIN G500H SYSTEM WITH GDU 620 (NON-TOUCH SCREEN) DISPLAY

The Garmin GDU 620 display is a split screen PFD/MFD designed for use with Garmin’s G500H helicopter avionics system.

A typical Robinson Installation is illustrated on the following page.

The manufacturer’s document for the G500H system with GDU 620 display is:

<table>
<thead>
<tr>
<th>Title</th>
<th>Document No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garmin G500H Pilot’s Guide</td>
<td>190-01150-02</td>
</tr>
</tbody>
</table>

NOTE

A Robinson part no. D327-1 light filter may be used to reduce reflections in the windshield at night. The light filter is installed by clipping it to the front of the display. Filter use is at pilot discretion.
SECTION 7: SYSTEMS DESCRIPTION (cont’d)

1. AIRSPEED INDICATOR
2. ENGINE AND ROTOR TACHS
3. ALTIMETER
4. MANIFOLD PRESSURE GAGE
5. FULL THROTTLE LIGHT
6. MULTI-FUNCTION DISPLAY
7. CLUTCH ACTUATOR LIGHT
8. M.R. GEARBOX TEMP LIGHT
9. M.R. GEARBOX CHIP LIGHT
10. CARBON MONOXIDE LIGHT
11. STARTER-ON LIGHT
12. T.R. GEARBOX CHIP LIGHT
13. LOW FUEL LIGHT
14. LOW RPM LIGHT
15. ALT LOW VOLTAGE LIGHT
16. ENGINE FIRE LIGHT
17. OIL PRESSURE LIGHT
18. GOVERNOR-OFF LIGHT
19. PRIMARY FLIGHT DISPLAY
20. OPTIONAL INSTRUMENT
21. CLOCK
22. CARBURETOR AIR TEMP
23. OUTSIDE AIR TEMP/VOLTOMETER
24. PANEL LIGHTS DIMMER
25. ENGINE INSTRUMENTS
26. GPS NAVIGATOR
27. CLUTCH ACTUATOR SWITCH
28. IGNITION SWITCH
29. ROTOR BRAKE LIGHT
30. CABIN HEAT
31. NAVIGATION LIGHTS SWITCH
32. ANTI-COLLISION LIGHT SWITCH
33. AVIONICS MASTER SWITCH
34. ALTERNATOR SWITCH
35. BATTERY SWITCH
36. CABIN AIR
37. AUDIO CONTROL
38. AVIONICS STACK
39. CYCLIC FRICION
40. CARBURETOR HEAT
41. ELT SWITCH (OPT’L)
42. MIXTURE CONTROL
43. PITOT HEAT SWITCH (OPT’L)

OPTIONAL INSTRUMENT PANEL WITH
GARMIN G500H SYSTEM WITH GDU 620 DISPLAY
(Exact panel configuration may vary with optional equipment and date of helicopter manufacture.)
SECTION 7: SYSTEMS DESCRIPTION (cont’d)

GARMIN G500H SYSTEM WITH GDU 1060 TXi OR GDU 700L TXi TOUCH SCREEN DISPLAY

The Garmin GDU 1060 TXi is a 10.6 inch diagonal split screen PFD/MFD designed for use with Garmin’s G500H Helicopter Avionics System.

The Garmin GDU 700L TXi is a 7 inch diagonal PFD/MFD designed for use with Garmin’s G500H helicopter avionics system.

Both displays use a touch screen for pilot interface, with primary functions duplicated via knobs and buttons.

Robinson installations for each of the displays are illustrated on the following pages.

The manufacturer’s document for the G500H system with GDU 1060 TXi or GDU 700L TXi display is:

<table>
<thead>
<tr>
<th>Title</th>
<th>Document No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garmin G500(H)/G600/G700 TXi Pilot’s Guide</td>
<td>190-01717-11</td>
</tr>
</tbody>
</table>
Section 7: Systems Description (cont’d)

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Airspeed Indicator</td>
</tr>
<tr>
<td>2.</td>
<td>Engine and Rotor Tachs</td>
</tr>
<tr>
<td>3.</td>
<td>Altimeter</td>
</tr>
<tr>
<td>4.</td>
<td>Manifold Pressure Gage</td>
</tr>
<tr>
<td>5.</td>
<td>Full Throttle Light</td>
</tr>
<tr>
<td>6.</td>
<td>Primary/Multi FXN Display</td>
</tr>
<tr>
<td>7.</td>
<td>Clutch Actuator Light</td>
</tr>
<tr>
<td>8.</td>
<td>M.R. Gearbox Temp Light</td>
</tr>
<tr>
<td>9.</td>
<td>M.R. Gearbox Chip Light</td>
</tr>
<tr>
<td>10.</td>
<td>Carbon Monoxide Light</td>
</tr>
<tr>
<td>11.</td>
<td>Starter-On Light</td>
</tr>
<tr>
<td>12.</td>
<td>T.R. Gearbox Chip Light</td>
</tr>
<tr>
<td>13.</td>
<td>Low Fuel Light</td>
</tr>
<tr>
<td>14.</td>
<td>Low RPM Light</td>
</tr>
<tr>
<td>15.</td>
<td>Alt Low Voltage Light</td>
</tr>
<tr>
<td>16.</td>
<td>Engine Fire Light</td>
</tr>
<tr>
<td>17.</td>
<td>Oil Pressure Light</td>
</tr>
<tr>
<td>18.</td>
<td>Governor-Off Light</td>
</tr>
<tr>
<td>19.</td>
<td>Optional Instrument</td>
</tr>
<tr>
<td>20.</td>
<td>Clock</td>
</tr>
<tr>
<td>21.</td>
<td>Carburetor Air Temp</td>
</tr>
<tr>
<td>22.</td>
<td>Outside Air Temp/Voltmeter</td>
</tr>
<tr>
<td>23.</td>
<td>Panel Lights Dimmer</td>
</tr>
<tr>
<td>24.</td>
<td>Engine Instruments</td>
</tr>
<tr>
<td>25.</td>
<td>GPS Navigator</td>
</tr>
<tr>
<td>26.</td>
<td>Clutch Actuator Switch</td>
</tr>
<tr>
<td>27.</td>
<td>Ignition Switch</td>
</tr>
<tr>
<td>28.</td>
<td>Rotor Brake Light</td>
</tr>
<tr>
<td>29.</td>
<td>Cabin Heat</td>
</tr>
<tr>
<td>30.</td>
<td>Navigation Lights Switch</td>
</tr>
<tr>
<td>31.</td>
<td>Anti-Collision Light Switch</td>
</tr>
<tr>
<td>32.</td>
<td>Avionics Master Switch</td>
</tr>
<tr>
<td>33.</td>
<td>Alternator Switch</td>
</tr>
<tr>
<td>34.</td>
<td>Battery Switch</td>
</tr>
<tr>
<td>35.</td>
<td>Cabin Air</td>
</tr>
<tr>
<td>36.</td>
<td>Audio Control</td>
</tr>
<tr>
<td>37.</td>
<td>Avionics Stack</td>
</tr>
<tr>
<td>38.</td>
<td>Cyclic Friction</td>
</tr>
<tr>
<td>39.</td>
<td>Carburetor Heat</td>
</tr>
<tr>
<td>40.</td>
<td>ELT Switch (Opt’l)</td>
</tr>
<tr>
<td>41.</td>
<td>Mixture Control</td>
</tr>
<tr>
<td>42.</td>
<td>Pitot Heat Switch (Opt’l)</td>
</tr>
</tbody>
</table>

Optional Instrument Panel with Garmin G500H System with GDU 1060 TXi Display

(Exact panel configuration may vary with optional equipment and date of helicopter manufacture.)
SECTION 7: SYSTEMS DESCRIPTION (cont’d)

1. AIRSPEED INDICATOR
2. ENGINE AND ROTOR TACHS
3. ALTIMETER
4. MANIFOLD PRESSURE GAGE
5. CLOCK
6. PRIMARY/MULTI FXN DISPLAY
7. CLUTCH ACTUATOR LIGHT
8. M.R. GEARBOX TEMP LIGHT
9. M.R. GEARBOX CHIP LIGHT
10. CARBON MONOXIDE LIGHT
11. STARTER-ON LIGHT
12. T.R. GEARBOX CHIP LIGHT
13. LOW FUEL LIGHT
14. LOW RPM LIGHT
15. ALT LOW VOLTAGE LIGHT
16. ENGINE FIRE LIGHT
17. OIL PRESSURE LIGHT
18. GOVERNOR-OFF LIGHT
19. FULL THROTTLE LIGHT
20. ROTOR BRAKE LIGHT
21. IGNITION SWITCH
22. CLUTCH ACTUATOR SWITCH
23. GPS NAVIGATOR
24. CARBURETOR AIR TEMP
25. OUTSIDE AIR TEMP/VOLTOMETER
26. PANEL LIGHTS DIMMER
27. ENGINE INSTRUMENTS
28. CABIN HEAT
29. NAVIGATION LIGHTS SWITCH
30. ANTI-COLLISION LIGHT SWITCH
31. AVIONICS MASTER SWITCH
32. ALTERNATOR SWITCH
33. BATTERY SWITCH
34. CABIN AIR
35. AVIONICS STACK
36. CYCLIC FRICTION
37. CARBURETOR HEAT
38. ELT SWITCH (OPT’L)
39. MIXTURE CONTROL
40. PITOT HEAT SWITCH (OPT’L)

OPTIONAL INSTRUMENT PANEL WITH
GARMIN G500H SYSTEM WITH GDU 700L TXi DISPLAY
(Exact panel configuration may vary with optional equipment and date of helicopter manufacture.)