SECTION 1

GENERAL

CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>Cautions and Notes</td>
<td>1-2</td>
</tr>
<tr>
<td>R44 Cadet Helicopter</td>
<td>1-3</td>
</tr>
<tr>
<td>Descriptive Data</td>
<td>1-4</td>
</tr>
<tr>
<td>Performance Definitions</td>
<td>1-6</td>
</tr>
<tr>
<td>Weight and Balance Definitions</td>
<td>1-7</td>
</tr>
<tr>
<td>Conversion Tables</td>
<td>1-8</td>
</tr>
</tbody>
</table>
INTENTIONALLY BLANK
SECTION 1

GENERAL

INTRODUCTION

This Pilot’s Operating Handbook is designed as an operating guide for the pilot. It includes the material required to be furnished to the pilot by 14 CFR parts 21, 27, and 36. It also contains supplemental data supplied by the helicopter manufacturer.

This handbook is not designed as a substitute for adequate and competent flight instruction or for knowledge of current airworthiness directives, applicable federal aviation regulations, and advisory circulars. Nor is it intended to be a guide for basic flight instruction or a training manual. It should not be used for operational purposes unless kept in a current status.

Assuring that the helicopter is in airworthy condition is the responsibility of the owner. The pilot in command is responsible for determining that the helicopter is safe for flight. The pilot is also responsible for remaining within the operating limitations as outlined by instrument markings, placards, and this handbook.

Since it is very difficult to refer to a handbook while flying a helicopter, the pilot should study the entire handbook and become very familiar with the limitations, performance, procedures, and operational handling characteristics of the helicopter before flight.

This handbook has been divided into ten numbered sections. Limitations and emergency procedures have been placed ahead of normal procedures, performance, and other sections to provide easier access to that information. Provisions for expansion of the handbook have been made by deliberate omission of certain paragraph numbers, figure numbers, item numbers, and pages noted as being intentionally blank.
CAUTIONS AND NOTES

Cautions and Notes emphasize important information and are used as follows:

CAUTION Equipment damage, injury, or death can result if procedure or instruction is not followed.

NOTE Provides emphasis or supplementary information.
ROBINSON
R44 CADET
SECTION 1
GENERAL

R44 CADET HELICOPTER

ISSUED: 29 APR 2016
DESCRIPTIVE DATA

MAIN ROTOR
 Articulation Free to teeter and cone, rigid inplane
 Number of Blades 2
 Diameter 33 feet
 Blade Chord 10.0 inches inboard, 10.6 inches outboard
 Blade Twist -6 Degrees
 Tip Speed at 102% RPM 705 FPS

TAIL ROTOR
 Articulation Free to teeter, rigid inplane
 Number of Blades 2
 Diameter 58 inches
 Blade Chord 5.1 inches (constant)
 Blade Twist 0
 Precone Angle 1 Degree
 Tip Speed at 102% RPM 614 FPS

DRIVE SYSTEM
 Engine to Upper Sheave: Four double Vee-belts with 0.778:1 speed reducing ratio
 Upper Sheave to Drive Line: Sprag-type overrunning clutch
 Drive Line to Main Rotor: Spiral-bevel gears with 11:57 speed reducing ratio
 Drive Line to Tail Rotor: Spiral-bevel gears with 31:27 speed increasing ratio
DESCRIPTIVE DATA (cont’d)

POWERPLANT

Model: Lycoming 0-540-F1B5 (FAA type certificate no. E-295)

Type: Six cylinder, horizontally opposed, direct drive, air cooled, carbureted, normally aspirated

Displacement: 541.5 cubic inches

Normal rating: 260 BHP @ 2800 RPM

R44 Cadet
Maximum continuous rating: 185 BHP at 2718 RPM (102% on tachometer)

R44 Cadet
5 Minute takeoff rating: 210 BHP at 2718 RPM

Cooling system: Direct drive squirrel-cage blower

FUEL

Approved fuel grades and capacity: See Section 2.

OIL

Approved oil grades and capacity: See Section 8.
PERFORMANCE DEFINITIONS

KIAS Knots Indicated Airspeed is speed shown on the airspeed indicator.

KCAS Knots Calibrated Airspeed is speed shown on the airspeed indicator corrected for instrument and position error. (See Section 5 for position error correction.)

KTAS Knots True Airspeed is airspeed relative to undisturbed air. It is KCAS corrected for pressure altitude and temperature.

\(V_{ne} \) Never-Exceed Airspeed.

\(V_y \) Speed for best rate of climb.

\(V_h \) Stabilized level-flight speed at maximum continuous power.

MSL Altitude Altitude above mean sea level, indicated by the altimeter (corrected for instrument error) when the barometric subscale is set to the atmospheric pressure existing at sea level.

Pressure Altitude Altitude indicated by the altimeter (corrected for instrument error) when the barometric subscale is set to 29.92 inches of mercury (1013.2 mb).

Density Altitude Altitude in ISA conditions at which the air would have the same density (it is pressure altitude corrected for OAT).

ISA International Standard Atmosphere exists when pressure is 29.92 inches of mercury at sea level, temperature is 15°C at sea level, and temperature decreases 1.98°C per 1000 feet of altitude.

BHP Brake Horsepower is actual power output of the engine.

MAP Manifold Absolute Pressure is the absolute pressure in the engine intake manifold.

RPM Revolutions Per Minute or speed of engine or rotor. (Shown by tachometer as percentage of 2665 engine RPM and 400 main rotor RPM).

MCP Maximum Continuous Power.

TOP Takeoff Power (limited to 5 minutes in the R44 Cadet).

Critical Altitude Altitude at which full throttle produces maximum allowable power (MCP or TOP).

TOGW Takeoff Gross Weight.
PERFORMANCE DEFINITIONS (cont’d)

OAT Outside Air Temperature
CAT Carburetor Air Temperature
CHT Cylinder Head Temperature
GPH Gallons Per Hour
AGL Above Ground Level
IGE In Ground Effect
OGE Out of Ground Effect
ALT Alternator

WEIGHT AND BALANCE DEFINITIONS

Reference Datum A vertical plane from which horizontal distances are measured for balance purposes. The longitudinal reference datum is 100 inches forward of the main rotor shaft centerline for the R44 Cadet.

Station Fore-and-aft location along the helicopter fuselage given in terms of distance in inches from the longitudinal reference datum.

Arm Horizontal distance from a reference datum to the center of gravity (CG) of an item.

Moment The weight of an item multiplied by its arm.

Center of Gravity (CG) Location on the fuselage (usually expressed in inches from the reference datum) at which the helicopter would balance. CG is calculated by dividing the total helicopter moment by total helicopter weight.

CG Limits Extreme CG locations within which the helicopter must be operated at a given weight.

Usable Fuel Fuel available for flight planning.

Unusable Fuel Fuel remaining in the tank that cannot reliably provide uninterrupted fuel flow in the critical flight attitude.

Standard Empty Weight Weight of a standard helicopter including unusable fuel, full operating fluids, and full engine oil.

Basic Empty Weight Standard empty weight plus weight of installed optional equipment.

Payload Weight of occupants, cargo, and baggage.

Useful Load Difference between maximum gross weight and basic empty weight.
METRIC TO ENGLISH

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>centimeters (cm)</td>
<td>0.3937</td>
<td>inches (in)</td>
</tr>
<tr>
<td>kilograms (kg)</td>
<td>2.2046</td>
<td>pounds (lb)</td>
</tr>
<tr>
<td>kilometers</td>
<td>0.5400</td>
<td>nautical miles</td>
</tr>
<tr>
<td>kilometers</td>
<td>0.6214</td>
<td>statute miles (mi)</td>
</tr>
<tr>
<td>liters</td>
<td>0.2642</td>
<td>gallons, U.S. (gal)</td>
</tr>
<tr>
<td>liters</td>
<td>1.0567</td>
<td>quarts (qt)</td>
</tr>
<tr>
<td>meters</td>
<td>3.2808</td>
<td>feet (ft)</td>
</tr>
<tr>
<td>millibars (mb)</td>
<td>0.0295</td>
<td>inches of mercury (in. Hg)</td>
</tr>
</tbody>
</table>

ENGLISH TO METRIC

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>feet (ft)</td>
<td>0.3048</td>
<td>meters</td>
</tr>
<tr>
<td>gallons, U.S. (gal)</td>
<td>3.7854</td>
<td>liters</td>
</tr>
<tr>
<td>inches (in)</td>
<td>2.5400</td>
<td>centimeters (cm)</td>
</tr>
<tr>
<td>inches (in)</td>
<td>25.4000</td>
<td>millimeters (mm)</td>
</tr>
<tr>
<td>inches of mercury</td>
<td>33.8639</td>
<td>millibars (mb)</td>
</tr>
<tr>
<td>(in. Hg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nautical miles (nm)</td>
<td>1.8520</td>
<td>kilometers</td>
</tr>
<tr>
<td>pounds (lb)</td>
<td>0.4536</td>
<td>kilograms (kg)</td>
</tr>
<tr>
<td>quarts (qt)</td>
<td>0.9464</td>
<td>liters</td>
</tr>
<tr>
<td>statute miles (mi)</td>
<td>1.6093</td>
<td>kilometers</td>
</tr>
</tbody>
</table>

1 nautical mile = 1.1508 statute miles
1 statute mile = 0.8690 nautical mile

TEMPERATURE

\[
\text{°F} = \frac{9}{5} \text{ (°C)} + 32 \\
\text{°C} = \frac{5}{9} \text{ (°F − 32)}
\]